Inorg. Chem. 2007, 46, 7394–7402

Transition Metal-Catalyzed Dissociation of Phosphine–Gallane Adducts: Isolation of Mechanistic Model Complexes and Heterogeneous Catalyst Poisoning Studies

Timothy J. Clark,[†] Cory A. Jaska,[†] Ayse Turak,[‡] Alan J. Lough,[†] Zheng-Hong Lu,[‡] and Ian Manners^{*,†,§}

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada, and School of Chemistry, University of Bristol, Bristol BS8 1TS, England

Received March 26, 2007

Attempts to induce the catalytic dehydrocoupling of the phosphine–gallane adduct Cy_2PH -GaH₃ (Cy = cyclohexyl) (1) by treatment with ca. 5 mol % of either the Rh(I) complex [{Rh(μ -Cl)(1,5-cod)}₂] (cod = cyclooctadiene) or the Rh(0) species Rh/Al₂O₃ and [Oct₄N]CI-stabilized colloidal Rh led to catalytic P–Ga bond cleavage to generate the phosphine, H₂, and Ga metal. Interestingly, subsequent treatment of the reaction mixtures with Me₂NH·BH₃ failed to lead to the formation of [Me₂N–BH₂]₂ via Rh-catalyzed dehydrocoupling, which suggested that catalyst deactivation was taking place. Poisoning studies involving the treatment of the active Rh(0) catalyst with Cy_2PH , PMe₃, or GaH₃·OEt₂ showed that deactivation indeed occurred as the dehydrocoupling of Me₂NH·BH₃ either dramatically decreased in rate or did not take place at all. The X-ray photoelectron spectroscopy analysis of colloidal Rh(0) that had been treated with Cy_2PH and PMe₃ confirmed the presence of phosphorus on the catalyst surface in each case, consistent with catalyst poisoning via phosphine ligation. A mechanism for the Rh-catalyzed P–Ga bond cleavage reaction of 1 and Me₃P·GaH₃ (2) is proposed and involves the initial reaction of Ga–H bonds with the Rh colloid surface, which weakens and ultimately breaks the P–Ga bond. The reasonable nature of this mechanism is supported by a model reaction between the zerovalent group 9 complex Co₂(CO)₈ and 2 which afforded Me₃P·Ga[Co(CO)₄]₃ (3). Consistent with the elongated and thus weakened P–Ga bond in 3, solutions of this species in Et₂O subsequently form the known complex [(Me₃P)Co(CO)₃]₂ (4) and Ga metal after 4 h at 25 °C.

Introduction

Although metal-catalyzed bond formation and cleavage reactions have played a critical and widespread role in modern synthetic organic chemistry, the use of transition metal catalysts to form or cleave hetero- and homonuclear bonds between main-group elements is still in its relative infancy. Traditionally, synthetic methods in main-group chemistry often utilize metathesis reactions such as salt elimination to generate new bonds. However, the discoveries in the early 1980s that PtBr₂ acts as a general dehydrodimerization catalyst for boron hydrides and carboranes by Sneddon and co-workers¹ and of Ti-catalyzed dehydropolymerization of primary silanes by Harrod and co-workers² launched the development of catalytic routes to rings, chains, and polymers based on p-block elements.³

Our research group has reported late transition metalcatalyzed dehydrocoupling reactions as an alternative route

 $[\]ast$ To whom correspondence should be addressed. E-mail: Ian.Manners@bristol.ac.uk.

[†] Department of Chemistry, University of Toronto.

[‡]Department of Materials Science and Engineering, University of Toronto.

[§] School of Chemistry, University of Bristol.

⁽¹⁾ Corcoran, E. W.; Sneddon, L. G. J. Am. Chem. Soc. 1984, 106, 7793.

⁽²⁾ Aitken, C.; Harrod, J. F.; Samuel, E. J. Organomet. Chem. 1985, 279, C11.

⁽³⁾ For a recent review on metal-catalyzed dehydrocoupling, see: Clark, T. J.; Lee, K.; Manners, I. *Chem.–Eur. J.* 2006, *12*, 8634.

^{(4) (}a) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I. Angew. Chem., Int. Ed. 1999, 38, 3321. (b) Dorn, H.; Singh, R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2000, 122, 6669. (c) Dorn, H.; Rodezno, J. M.; Brunnhöfer, B.; Rivard, E.; Massey, J. A.; Manners, I. Macromolecules 2003, 36, 291.

Scheme 1

to generating $P-B^4$ bonds from phosphine-borane adducts, which has allowed routes to novel rings, chains, and polymers $[RR'P-BH_2]_n$ (eqs 1 and 2 in Scheme 1).⁵ Such reactions proceed at particularly mild temperatures for fluoroaryl phosphine-borane derivatives, and preliminary investigations have shown that the resultant polyphosphinoboranes function as a negative-tone resist in electron-beam lithography.⁶ In addition, we have reported that the dehydrocoupling of primary and secondary amine-borane adducts and H₃N·BH₃ is promoted by Rh (pre)catalysts affording oligomers and/ or insoluble, presumably cross-linked materials $[H_x N - BH_y]_n$ (eq 3 in Scheme 1).⁷ Transition metal-catalyzed dehydrocoupling also has potential utility in hydrogen storage applications, which are desirable, as hydrogen is a clean energy source that can potentially replace the petroleumderived products that currently fuel vehicles.⁸ For example, there is considerable current interest in amine-borane adducts such as H₃N·BH₃, which possesses one of the highest densities of hydrogen available (19.6 wt % H₂), and there have been numerous recent reports related to the thermal or catalytic dehydrogenation of H₃N·BH₃ or other high H₂ content amine-borane adducts.^{9,10} In addition, the catalytic dehydrocoupling of Me₂NH·BH₃ to afford the cyclic dimer [Me₂N-BH₂]₂ has been employed as a means of transfer hydrogenation when carried out in a closed system in the presence of unsaturated organic species.¹¹

Interestingly, catalytic dehydrocoupling reactions of phosphine- and amine-borane adducts using the (pre)catalyst

- (6) Clark, T. J.; Rodezno, J. M.; Clendenning, S. B.; Aouba, S.; Brodersen, P. M; Lough, A. J.; Ruda, H. E.; Manners, I. *Chem.-Eur. J.* 2005, *11*, 4526.
- (7) (a) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. *Chem. Commun.* 2001, 962. (b) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. *Am. Chem. Soc.* 2003, *125*, 9424.
- (8) (a) Basic Research Needs for the Hydrogen Economy; Dresselhaus, M., Crabtree, G., Buchanan M., Eds.; Basic Energy Sciences, Office of Science, U.S. Department of Energy: Washington, DC, 2003. (b) *The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs*; National Academies Press: Washington, DC, 2004.

 $[{Rh(1,5-cod)(\mu-Cl)}_2]$ (cod = cyclooctadiene) were found to operate under different mechanisms where the former is a homogeneous process and the latter is a heterogeneous process involving colloidal Rh metal.^{12,13} We have also detailed that heterogeneous Rh(0) catalysts, when treated with a variety of group 13 hydrides, generate H₂ gas and a passivating layer incorporating the group 13 element on the surface of the metal, thereby deactivating the catalyst toward the dehydrocoupling of amine-borane adducts.¹⁴ Recently, we have demonstrated the use of the early transition-metal complex [Cp₂Ti] for amine-borane adduct dehydrocoupling and found that it exhibits increased catalytic activity relative to Rh catalysts.¹⁵ Notably, this catalyst appears to operate in a homogeneous fashion in contrast to the heterogeneous Rh-based system. Goldberg, Heinekey, and co-workers have described a highly active, homogeneous Ir catalyst that dehydrocouples H₃N·BH₃ at room temperature to afford the

- (11) Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 2698.
- (12) Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776.
- (13) Autrey and co-workers have studied the dehydrocoupling of Me₂NH-BH₃ using Rh catalysts and reaction conditions that differ from those used in our group. On the basis of their observations, they propose that the process may be homogeneous: Chen, Y.; Fulton, J. L.; Linehan, J. C.; Autrey, T. J. Am. Chem. Soc. 2005, 127, 3254.
- (14) Jaska, C. A.; Clark, T. J.; Clendenning, S. B.; Grozea, D.; Turak, A.; Lu, Z.-H.; Manners, I. J. Am. Chem. Soc. 2005, 127, 5116.
- (15) Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006, 128, 9582.

⁽⁵⁾ For a report on the B(C₆F₅)₃-catalyzed formation of P–B bonds via dehydrocoupling, see: Denis, J.-M.; Forintos, H.; Szelke, H.; Toupet, L.; Pham, T.-N.; Madec, P.-J.; Gaumont, A.-C. *Chem. Commun.* 2003, 54.

^{(9) (}a) Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed. 2005, 44, 3578. (b) Chandra, M.; Xu, Q. J. Power Sources 2006, 156, 190. (c) Bluhm, M. E.; Bradley, M. G.; Butterick, R., III; Kusari, U.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 7748. (d) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048. (e) Yoon, C. W.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 13992. (f) Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew. Chem., Int. Ed. 2007, 46, 746. (g) Nguyen, M. T.; Nguyen, V. S.; Matus, M. H.; Gopakumar, G.; Dixon, D. A. J. Phys. Chem. A 2007, 111, 679. (h) Cheng, F.; Ma, H.; Li, Y.; Chen, J. Inorg. Chem. 2007, 46, 788. (i) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc. 2007, 129, 1844.

⁽¹⁰⁾ It has proven challenging to regenerate H₃N·BH₃ from the aminoborane-based products, rendering the system reversible. In this context, Stephan and co-workers have recently reported a remarkable phosphonium-borate species that demonstrates reversible H₂ activation in the absence of a metal, see: Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science, **2006**, *314*, 1124.

cyclic pentamer $[H_2N-BH_2]_5$, as characterized by powder X-ray diffraction and IR spectroscopy.^{9d} Similarly, Baker and co-workers have also shown that a Ni-based catalyst promotes the dehydrocoupling of H_3N ·BH₃, yielding a soluble, cross-linked borazine structure in 4 h at 60 °C.⁹ⁱ

As part of our continuing research program to develop novel extended structures based on main-group elements, we have investigated the reactivity of other Lewis acid-base adducts toward the dehydrocoupling process. In this paper, we report on our attempts to extend this new synthetic method to some analogous adducts containing heavier group 13 elements, namely, phosphine-gallanes.¹⁶

Experimental Section

General Methods and Materials. All reactions and product manipulations were performed under an atmosphere of dry nitrogen using standard Schlenk techniques or in a Mbraun glovebox filled with dry nitrogen. Tetrahydrofuran (THF) and diethyl ether were dried over Na/benzophenone and distilled prior to use. Toluene and hexanes were purified using the Grubbs method.¹⁷ Ga metal (99.9995%), PMe₃, Rh/Al₂O₃ (5 wt. % Rh), and HCl (2.0 M solution in Et₂O) were purchased from Aldrich and used as received. Cy₂-PH was acquired through a generous donation from Cytec. Me₂-NH•BH₃ and [Co₂(CO)₈] were purchased from Strem. Me₂NH•BH₃ was further purified by sublimation at 25 °C whereas [Co₂(CO)₈] was sublimed immediately before use. [{Rh(μ -Cl)(1,5-cod)}₂],¹⁸ Rh_{colloid}/[Oct₄N]Cl,¹⁹ Me₃P•GaH₃ (2),²⁰ and Li[GaH₄]²¹ were synthesized by literature procedures.

Equipment. NMR spectra were recorded on either Varian Gemini 300 MHz or Varian VRX-S (Unity) 400 MHz spectrometers. Chemical shifts are reported relative to residual solvent peaks $(^{1}H, ^{13}C)$ or external H₃PO₄ (^{31}P) or BF₃•OEt₂ (^{11}B) references. The NMR spectra were obtained at 300 MHz (¹H), 100 MHz (¹³C), 121 MHz (³¹P), and 96 MHz (¹¹B). The mass spectra were obtained with a VG 70-250S mass spectrometer operating in electron impact (EI) mode. Elemental analyses were obtained on a Perkin-Elmer Series 2400 CHNS analyzer maintained by the Analest facility at the University of Toronto. Infrared spectra were obtained on a Perkin-Elmer Spectrum One FT-IR spectrometer using KBr windows. The silicon (100) substrates were purchased from Wafer World, Inc., and cleaned by successive sonication treatments in CH₂Cl₂, isopropanol, piranha solution (H₂O₂/H₂SO₄, 1:3 vol %; *Caution:* piranha solution is extremely corrosive!), and deionized water followed by drying in air. X-ray photoelectron spectroscopy (XPS) samples were solution deposited onto a clean silicon substrate and analyzed on a PHI 500 ESCA system. A monochromated Al K α source with a photon energy of 1486.6 eV was used and recorded at a photoelectron takeoff angle of 45°. The peak positions were aligned and corrected for charge effects based on an adventitious C(1s) peak position at 284.8 eV. For the depth-profiling analysis, an Ar⁺ ion beam of 3 keV was used for 15 min and the spectra were reacquired.

(18) Giordano, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218.

(21) Shirk, A. E.; Shriver, D. F. Inorg. Synth. 1977, 17, 45.

Table 1. Crystallographic Data and Summary of Data Collection and Refinement for Structure 3

emp formula	C15H9Co3GaO12P	Ζ	2
fw	658.70	$D_{\rm C}$ (g/cm ³)	1.928
$T(\mathbf{K})$	150(2)	$\mu \text{ (mm}^{-1}\text{)}$	3.456
λ (Å)	0.71073	F(000)	644
cryst syst	triclinic	q range (deg)	2.71 - 27.58
space group	$P\overline{1}$	index ranges	$-11 \le h \le 11$
cryst size (mm)	$0.60\times0.10\times0.04$		$-13 \le k \le 13$
a (Å)	8.7826(4)		$-17 \le l \le 17$
b (Å)	10.0257(4)	reflns collected	14 601
<i>c</i> (Å)	13.4787(5)	ind reflns	5181
α (deg)	84.370(3)	R _{int}	0.0886
β (deg)	85.783(3)	GOF on F^2	1.040
γ (deg)	74.101(2)	$R1^a (I > 2\sigma(I))$	0.0458
$V(Å^3)$	1134.57(8)	wR2 ^{b} (all data)	0.1266
		peak/hole (e•Å ³)	0.673/ -1.247

a
 R1 = S||F_o| - |F_c||/S|F_o|. b wR2 = {S[w(F_o² - F_c²)²]/S[w(F_o²)²]}^{1/2}.

X-Ray Structural Determination. Diffraction data were collected on a Nonius Kappa-CCD with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The data were integrated and scaled with the *Denzo-SMN* package.²² The structures were solved and refined with the *SHELXTL-PC* version 5.1 software package.²³ Refinement was by full-matrix least squares on F^2 of all data (negative intensities included). All molecular structures are presented with thermal ellipsoids at a 30% probability level. In all structures, hydrogens bonded to carbon atoms were included in calculated positions and treated as riding atoms. Crystallographic data and the summary of data collection and refinement for structure **3** are presented in Table 1. CCDC-249316 (**3**) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of Cy₂PH·GaH₃ (1). [Cy₂PH₂]Cl was prepared by adding HCl (4.03 mL of a 2.0 M solution in diethyl ether, 8.06 mmol) to a solution of Cy₂PH (1.63 mL, 8.06 mmol) in 5 mL Et₂O at 25 °C causing a white solid to precipitate immediately. A solution of Li[GaH₄] in Et₂O (0.65 g, 8.05 mmol) was added to [Cy₂PH₂]-Cl at -78 °C and stirred for 3 h at 20 °C. The solution was filtered to separate LiCl, and the solvent was removed in vacuo affording 1 as a white solid in 79% yield (1.72 g, 6.35 mmol). In some cases, a white viscous residue was obtained upon solvent removal. Subsequent recrystallization of this oil from hexane at -35 °C also afforded **1** as a white solid. ¹H NMR (C_6D_6): δ 4.36 (s, GaH₃), 3.37 (d, PH, ${}^{1}J_{P-H} = 125.8 \text{ Hz}$), 1.70 (m, *i*-CH), 1.47 (m, β -CH₂), 1.21 (m, γ -CH₂), 0.95 (m, δ -CH₂). ¹³C{¹H} NMR (C₆D₆): δ 31.2 (s), 30.1 (d, $J_{CP} = 6.8$ Hz), 29.1 (d, $J_{CP} = 22$ Hz), 27.1 (d, $J_{CP} =$ 27.3 Hz), 26.3 (s). ³¹P NMR (C₆D₆): δ -15.7 (d, PH, ¹J_{P-H} = 308.5 Hz). EI-MS (70 eV): m/z 198 (M⁺ – GaH₃). Elemental Anal. Calcd for C₁₂H₂₆PGa (271.04): C, 53.18; H, 9.67. Found: C, 53.40; H, 9.45.

Reaction of 1 with [{**Rh**(μ -**Cl**)(**1,5-cod**)₂]. A catalytic amount of [{Rh(μ -Cl)(1,5-cod)₂] (ca. 5 mol % Rh) was added to a solution of **1** (ca. 0.125 g) in toluene (ca. 2 mL), causing the reaction mixture to immediately turn black with vigorous gas evolution. After 16 h of stirring at 25 °C, an aliquot of the reaction mixture was removed and the ³¹P NMR spectrum showed a single resonance at δ –28.1 ppm corresponding to free Cy₂PH.

Reaction of 1 with Rh/Al₂O₃ or Rh_{colloid}/[Oct₄N]Cl. In a typical experiment, a catalytic amount of Rh/Al₂O₃ (ca. 5 mol % Rh) was added to a solution of **1** (ca. 0.125 g) in toluene (ca. 2 mL), resulting

⁽¹⁶⁾ The thermal dehydrocoupling of P–H and Al/Ga–H bonds has been used to prepare donor-stabilized phosphanyl–alane and phosphanyl– gallane species: Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem., Int. Ed. 2001, 40, 4409.

⁽¹⁷⁾ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, 15, 1518.

⁽¹⁹⁾ Bönnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Jouben, T.; Korall, B.; Dinjus, E. Angew. Chem., Int. Ed. Engl. 1991, 30, 1312.

⁽²⁰⁾ Greenwood, N. N.; Ross, E. J. F.; Storr, A. J. Chem. Soc. 1965, 1400.

⁽²²⁾ Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307.

⁽²³⁾ Sheldrick, G. M. SHELXTL-PC, version 5.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 1997.

Catalyzed Dissociation of Phosphine-Gallane Adducts

in vigorous gas evolution. After 16 h of stirring at 25 °C, an aliquot of the reaction mixture was removed and the ³¹P NMR spectrum showed a single resonance at δ –28.1 corresponding to free Cy₂-PH. Similar results were obtained with Rh_{colloid}/[Oct₄N]Cl.

Treatment of 1 with Ga Metal. To a solution of **1** (0.150 g, 0.55 mmol) in toluene (ca. 1 mL) a catalytic amount of Ga metal (ca. 5 mol % Ga) was added, giving a slightly gray solution, which was stirred at 25 °C. After 9 h, an aliquot of the reaction mixture was removed and the ³¹P NMR spectrum showed only unreacted **1**.

Attempted Catalytic Dehydrocoupling of Me₂NH·BH₃ in the Presence of 1. A solution of 1 (0.217 g, 0.801 mmol) and Me₂-NH·BH₃ (0.047 g, 0.798 mmol) in toluene (ca. 1 mL) was stirred with no color change or gas evolution observed for 3 h at 25 °C. An aliquot of the reaction mixture was removed, and both ³¹P and ¹¹B NMR spectra indicated no dehydrocoupling activity, as only the starting materials were observed. To the above solution a catalytic amount of [{Rh(μ -Cl)(1,5-cod)}₂] (ca. 5 mol %) was added, causing the reaction mixture to immediately turn black with vigorous gas evolution. After 5 h of stirring at 25 °C, an aliquot of the reaction mixture was removed and the ³¹P NMR spectrum showed a single resonance at δ –28.1 corresponding to free Cy₂-PH whereas the ¹¹B NMR spectrum showed a single resonance at δ –13.9 corresponding to unreacted Me₂NH·BH₃.

Treatment of [{Rh(μ -Cl)(1,5-cod)}₂] with 1 equiv of Cy₂PH and Testing for Catalytic Activity. To a solution of Me₂NH·BH₃ (0.240 g, 4.07 mmol) in toluene (ca. 1 mL) a catalytic amount of [{Rh(μ -Cl)(1,5-cod)₂] (ca. 2 mol %) and Cy₂PH (ca. 2 mol %) was added and stirred at 25 °C, giving a red-brown solution over time. After 16 h, an aliquot of the reaction mixture was removed and the ¹¹B NMR spectra were obtained. The % conversion was calculated from the integration of the product (^B δ 5 ppm) and reactant (^B δ –13 ppm) resonances.

Treatment of [{Rh(μ -Cl)(1,5-cod)}2] with an Excess of Cy₂PH and Testing for Catalytic Activity. To a solution of Me₂NH·BH₃ (0.100 g, 1.69 mmol) in toluene (ca. 1 mL) a catalytic amount of [{Rh(μ -Cl)(1,5-cod)}2] (ca. 3 mol %) and Cy₂PH (ca. 10 mol %) was added and stirred at 25 °C, giving an orange solution over time. After 16 h, an aliquot of the reaction mixture was removed and the ¹¹B and ³¹P NMR spectra obtained. The % conversion was calculated from the integration of the product (^B δ 5 ppm) and reactant (^B δ -13 ppm) resonances whereas the ³¹P NMR spectrum revealed a resonance at δ -28.1 corresponding to free Cy₂PH in addition to two multiplets at ^P δ 33 (dd; ¹ J_{P-Rh} = 131 Hz, ² J_{P-P} = 40 Hz) and 50 (dt; ¹ J_{P-Rh} = 174 Hz, ² J_{P-P} = 40 Hz).

Treatment of Rh_{colloid}/[Oct₄N]Cl with Cy₂PH and Subsequent Testing for Catalytic Activity. Cy₂PH (0.013 g, 0.066 mmol) was added to a solution of Rh_{colloid}/[Oct₄N]Cl (0.042 g, 0.135 mmol) in THF (ca. 1 mL) and stirred at 25 °C. After 16 h, all volatiles were removed and the crude reaction mixture was washed with 2–3 mL portions of hexanes. The treated Rh(0) colloids were then dried overnight. To a solution of Me₂NH•BH₃ (0.200 g, 3.39 mmol) in toluene (ca. 1 mL) a catalytic amount of the treated Rh_{colloid}/[Oct₄N]-Cl (0.006 g, 5 mol % Rh) was added at 25 °C. After 16 h of stirring, an aliquot of the reaction mixture was removed and the ¹¹B NMR spectrum was obtained. The % conversion was calculated from the integration of the product (^B δ 5 ppm) and reactant (^B δ –13 ppm) resonances.

Testing for Lewis Acid Exchange between 1 and BH₃·THF. To a solution of **1** (0.100 g, 0.369 mmol) in toluene (ca. 2 mL) BH₃·THF (0.74 mL, 0.740 mmol) was added and stirred at 25 °C. After 75 min, an aliquot of the reaction mixture was removed and the ¹¹B and ³¹P NMR spectra were obtained, showing complete consumption of 1 and new resonances at $^P\delta$ 19 and $^B\delta$ –45 corresponding to $Cy_2PH{\boldsymbol{\cdot}}BH_3.^{24}$

Testing for Lewis Acid Exchange between 2 and BH₃·THF. To a solution of 2 (0.080 g, 0.538 mmol) in toluene (ca. 2 mL) BH₃•THF (1.10 mL, 1.10 mmol) was added and stirred at 25 °C. After 75 min, an aliquot of the reaction mixture was removed and the ¹¹B and ³¹P NMR spectra were obtained, showing complete consumption of 2 and new resonances at ^P δ -1 and ^B δ -37 corresponding to Me₃P·BH₃.²⁵

Treatment of 2 with [{**Rh**(μ -**Cl**)(**1**,**5-cod**)₂]. To a solution of **2** (0.088 g, 0.591 mmol) in toluene (ca. 2 mL) a catalytic amount of [{**Rh**(μ -**Cl**)(1,5-cod)₂] (ca. 2 mol %) was added, giving a red solution which was stirred at 25 °C. After 16 h, the ³¹P NMR spectrum showed a single resonance at δ –39.1 corresponding to unreacted **2**.

Treatment of 2 with a Stoichiometric Amount of [{Rh(μ -Cl)-(1,5-cod)}2]. To a solution of 2 (0.100 g, 0.672 mmol) in toluene (2 mL) 1 equiv of [{Rh(μ -Cl)(1,5-cod)}2] (0.166 g, 0.337 mmol) was added, resulting in vigorous gas evolution and the formation of an amber solution and black precipitate. After 16 h, the ³¹P and ¹H NMR spectra were obtained, showing complete consumption of **2** and resonances corresponding to [(Me₃P)RhCl(1,5-cod)].²⁶

Treatment of 2 with Substoichiometric Amounts of [{Rh(μ -Cl)(1,5-cod)}₂] and Subsequent Testing of Catalytic Dehydrocoupling Activity Toward Me₂NH•BH₃. To a solution of 2 (0.100 g, 0.672 mmol) and Me₂NH•BH₃ (0.040 g, 0.679 mmol) in toluene (ca. 2 mL) a substoichiometric amount of [{Rh(μ -Cl)(1,5-cod)}₂] (ca. 50 mol %) was added, resulting in vigorous gas evolution and the formation of a dark brown solution and black precipitate. After 16 h, an aliquot of the reaction mixture was removed and the ¹¹B and ³¹P NMR spectra were obtained. The % conversion was calculated from the integration of the product (^B δ 5 ppm) and reactant (^B δ -13 ppm) resonances whereas the ³¹P NMR spectrum revealed several resonances at δ -8 ([(Me₃P)RhCl(1,5-cod)]),²⁶ -18 (d; J = 28 Hz), -22 (d; J = 97 Hz), and -29 (d; J = 176 Hz) (unidentified).

Similar results were obtained for the reaction employing 10 mol % [{Rh(μ -Cl)(1,5-cod)}₂].

Treatment of 2 with [{Rh(μ -Cl)(1,5-cod)}₂] and Subsequent Testing of Catalytic Dehydrocoupling Activity. To a solution of 2 (0.088 g, 0.591 mmol) in toluene (ca. 1 mL) a catalytic amount of [{Rh(μ -Cl)(1,5-cod)}₂] (ca. 2 mol %) was added, giving a red solution which was stirred at 25 °C. After 5 h, the ³¹P NMR spectrum showed a single resonance at δ –39.1 corresponding to unreacted **2**. To this solution, Me₂NH·BH₃ (0.035 g, 0.594 mmol) was added and stirred at 25 °C. After 16 h, an aliquot of the reaction mixture was removed and the ³¹P NMR spectrum showed unreacted **2** whereas the ¹¹B NMR spectrum showed a single resonance at δ –13.9 corresponding to unreacted Me₂NH·BH₃.

Reaction of 2 with Rh/Al₂O₃ or Rh_{colloid}/[Oct₄N]Cl. To a solution of **2** (0.088 g, 0.591 mmol) in toluene (ca. 2 mL) a catalytic amount of Rh/Al₂O₃ (ca. 2 mol %) was added, resulting in vigorous gas evolution and giving a black solution, which was stirred at

⁽²⁴⁾ The ³¹P NMR spectroscopic characterization of Cy₂PH·BH₃ in CDCl₃ (^Pδ 19 ppm) has been previously reported, see: Stankevic, M.; Pietrusiewicz, K. M.; Synthesis 2005, 8, 1279. We independently carried out the synthesis of the compound by treatment of Cy₂PH with BH₃·THF in THF and observed, in situ, a multiplet centered at δ -45 in the ¹¹B NMR spectrum (d of q; ¹J_{B-P} = 47 Hz, ¹J_{B-H} = 97 Hz).
(25) Schmidbaur, H.; Weiss, E.; Müller, G. Synth. React. Inorg. Met-Org.

⁽²⁵⁾ Schmidbaur, H.; Weiss, E.; Muller, G. Synth. React. Inorg. Met-Org. Chem. 1985, 15, 401.

⁽²⁶⁾ Kulzick, M. A.; Price, R. T.; Andersen, R. A.; Muetterties, E. L. J. Organomet. Chem. 1987, 333, 105.

25 °C. After 5 h, the ³¹P NMR spectrum showed a single resonance at δ -60.9 corresponding to free PMe₃. Similar results were obtained with Rh_{colloid}/[Oct₄N]Cl.

Treatment of 2 with Rh/Al₂O₃ and Subsequent Testing of Catalytic Dehydrocoupling Activity. To a solution of 2 (0.088 g, 0.591 mmol) and Me₂NH·BH₃ (0.035 g, 0.594 mmol) in toluene (ca. 2 mL) a catalytic amount of Rh/Al₂O₃ (ca. 2 mol%) was added, resulting in vigorous bubbling and giving a black solution, which was stirred at 25 °C. After 16 h, the ³¹P NMR spectrum showed a single resonance at δ –60.9 corresponding to free PMe₃ whereas the ¹¹B NMR spectrum showed a single resonance at δ –13.9 corresponding to unreacted Me₂NH·BH₃.

Synthesis of Me₃P·Ga[Co(CO)₄]₃ (3). A solution of 2 in Et₂O (0.100 g, 0.672 mmol) was added to a solution of [Co₂(CO)₈] in Et₂O (0.115 g, 0.336 mmol) at 25 °C. This led to vigorous bubbling due to the release of a gas that was identified as H₂ by ¹H NMR when the reaction was performed in C₆D₆ (δ 4.46). After 1 min, the solvent was removed in vacuo and the residue dissolved in toluene, giving a maroon solution that was recrystallized at -30 °C affording orange-red crystals of **3** in 78% yield (0.115 g, 0.175 mmol). ¹H NMR (C₆D₆): δ 0.92 (d, PMe₃, ²J_{PH} = 10.5 Hz). ¹³C NMR (C₆D₆): δ 198.9 (s, CO), 10.5 (d, PMe₃, ¹J_{CP} = 31.1 Hz). ³¹P{¹H} NMR (C₆D₆): δ -32 (s, PMe₃). IR (toluene solution): ν_{CO} = 1966, 1982, 2000, 2025, 2072, 2088 cm⁻¹. EI-MS characterization was attempted numerous times but did not yield useful data presumably due to the exceptional reactivity and sensitivity of the compound.

Synthesis of $[(Me_3P)Co(CO)_3]_2$ (4).²⁷ A solution of 2 in Et₂O (0.100 g, 0.672 mmol) was added to a solution of $[Co_2(CO)_8]$ in Et₂O (0.115 g, 0.336 mmol) at 25 °C. This led to vigorous bubbling due to the release of a gas that was identified as H₂ by ¹H NMR when the reaction was performed in C₆D₆ (δ 4.46). After 16 h, the solvent was removed in vacuo and the residue dissolved in hexane, giving a maroon solution that was recrystallized at -30 °C affording dark red-brown crystals of **4** in 78% yield (0.038 g, 0.087 mmol). ¹H NMR (C₆D₆): δ 0.65 (d, PMe₃, ²J_{PH} = 10.8 Hz). ¹³C NMR (C₆D₆): δ 203.1 (s, CO), 18.8 (d, PMe₃, ¹J_{CP} = 31.9 Hz). ³¹P{¹H} NMR (C₆D₆): δ 26 (s, PMe₃). EI-MS (70 eV) *m*/*z*: 409 (M⁺ – CO). IR (hexadecane solution): $\nu_{CO} = 1950$, 1972 cm⁻¹.^{27a}

Results and Discussion

Catalytic Dissociation and Poisoning Behavior of Cy₂PH·GaH₃ (1). Lewis acid-base adducts of group 13/15 compounds such as phosphine–gallanes have been the subject of considerable interest as single-source metal-organic chemical vapor deposition (MOCVD) precursors in thin-film deposition for microelectronic device fabrication.²⁸ Generally, compounds of this type are synthesized by salt elimination reactions. The secondary phosphine–gallane Cy₂PH·GaH₃ (1) (Cy = cyclohexyl) was prepared in 79% yield from the dehydrogenative metathesis reaction of Li[GaH₄] and [Cy₂-PH₂]Cl. Compound 1 is stable in solution at room temperature for several hours before decomposition to Cy₂PH and Ga metal is detected. However, treatment of 1 with 5 mol % of [{Rh(μ -Cl)(1,5-cod)}₂] in toluene led to a rapid color

change from orange to black, and gas evolution was also observed. The volatile product was assumed to be H₂ based on the detection of this dissolved gas in the reaction solution by ¹H NMR (^H δ 4.46; lit. ^H δ 4.46).²⁹ The color change observed was similar to that detected during the catalytic dehydrocoupling of amine—borane adducts, in which the reduction of the Rh(I) (pre)catalyst occurs over a period of 45–200 min to give catalytically active Rh(0) colloids.^{7,12} In addition, complete adduct dissociation rather than dehydrocoupling was observed based on the quantitative formation of free Cy₂PH detected by ³¹P NMR (^P δ –28.1) and the apparent generation of Ga metal as a precipitate (eq 4).

$$Cy_{2}PH \cdot GaH_{3} \xrightarrow[\text{toluene, 25 °C}]{\text{toluene, 25 °C}} Cy_{2}PH + Ga \qquad (4)$$

It has been previously reported that Ga metal autocatalytically promotes the decomposition of Li[GaH₄].³⁰ To test for similar chemistry, we treated **1** with a catalytic amount of Ga metal but did not observe any reaction, which suggests that Rh(0) is the sole contributor to the metal-assisted dissociation process. Further evidence for the reduction of the Rh(I) (pre)catalyst to catalytically active Rh(0) metal particles was provided by the observation that treatment of **1** with 5 mol % of Rh/Al₂O₃ or [Oct₄N]Cl-stabilized Rh colloids (hereafter referred to as Rh_{colloid}/[Oct₄N]Cl) similarly resulted in H₂ evolution and the quantitative formation of Cy₂PH. Thus, the gallane moiety in **1** presumably behaves as a "borohydride-type" reducing agent to afford Rh(0) metal.

Previously, our group has reported that Me₂NH·BH₃ undergoes Rh-catalyzed dehydrocoupling at 25 °C to afford the cyclic dimer $[Me_2N-BH_2]_2$ (eq 3).⁷ A mixture of 1 and Me₂NH·BH₃ was stirred for several hours with no change detected in the ³¹P and ¹¹B NMR spectra. However, upon the addition of a catalytic amount of $[{Rh(\mu-Cl)(1,5-cod)}_2]$ to this mixture, the solution again immediately turned black and H₂ evolution was observed. The ³¹P and ¹¹B NMR spectra were recorded and showed the presence of free Cy2-PH and, surprisingly, unreacted Me₂NH·BH₃, respectively. The absence of dehydrocoupling of the latter was intriguing and implied that deactivation of the Rh(0) catalyst was taking place. There is well-established precedent for the poisoning of transition metal catalysts by strongly coordinating ligands such as PPh_3^{31} or CS_2^{32} , which block access of the substrate to the active site. Indeed, the stoichiometry of the donor ligand per metal atom required for effective catalyst poisoning acts as an aid in determining whether a process proceeds by a heterogeneous or homogeneous mechanism. Thus, Finke et al. have demonstrated that if substantially less than 1 equiv of the added ligand (per metal atom) poisons the catalyst completely, then it is highly suggestive of a heterogeneous

^{(27) (}a) Samir Arabi, M.; Maisonnat, A.; Attali, S.; Poilblanc, R. J. Organomet. Chem. 1974, 67, 109. (b) Jones, R. A.; Seeberger, M. H.; Stuart, A. L.; Whittlesey, B. R.; Wright, T. C. Acta Crystallogr. 1986, C42, 399.

⁽²⁸⁾ Cowley, A. H.; Jones, R. A. Angew. Chem., Int. Ed. 1989, 28, 1208.

⁽²⁹⁾ Böhm, V. P. W.; Brookhart, M. Angew. Chem., Int. Ed. 2001, 40, 4694.

⁽³⁰⁾ Greenwood, N. N. New Pathways in Inorganic Chemistry; Ebsworth, E. A. V., Maddock, A. G., Sharpe, A. G., Eds.; Cambridge University Press: Cambridge, U.K., 1968; p 37.

Catalyzed Dissociation of Phosphine-Gallane Adducts

catalyst.³¹ The presence of Cy₂PH along with unreacted Me₂-NH·BH₃ suggested that the decomposition of Cy₂PH·GaH₃ occurred with subsequent binding of the phosphine to the active Rh catalyst, poisoning it toward the dehydrocoupling of Me₂NH·BH₃.

To investigate the poisoning of the Rh catalyst toward the dehydrocoupling of Me₂NH·BH₃ in the presence of substoichiometric amounts of Cy2PH, Rhcolloid/[Oct4N]Cl was treated with 0.5 equiv of Cy₂PH and allowed to react for 1 day. Following the evacuation of volatiles, washing with hexanes, and drying overnight to remove excess phosphine, a portion of the Rh_{colloid}/[Oct₄N]Cl was removed and used in an attempt to catalyze the dehydrocoupling of Me₂NH· BH₃.³³ It was found that there was greatly reduced catalytic activity, as only 2.5% conversion to [Me₂N-BH₂]₂ was observed by ¹¹B NMR spectroscopy after 16 h. This suggested that Cy₂PH does indeed bind to most of the active sites on the Rh(0) catalyst surface. Furthermore, the strength of binding is significant, as the phosphine ligands were not readily eliminated under reduced pressure or solvent washing.³⁴ The colloidal Rh catalyst was also examined by XPS before and after treatment with Cy₂PH. As expected, the XPS spectrum of the colloids before treatment showed essentially no phosphorus content, as indicated by the lack of a P(2p)peak. However, the colloids after treatment with Cy₂PH showed a P(2p) peak at 132.6 eV, which falls into the typical range for phosphine oxides (ca. 132.0-134.0 eV).35 In addition, the expected Rh(3d_{5/2}) peak at 308.0 eV was observed, which is characteristic of an oxide species, as it falls into the typical range for Rh_2O_3 (ca. 308.2–308.8 eV).³⁵ In the case of both Rh and P, it is likely that an oxide species forms when the colloids are exposed to the atmosphere during preparation of the sample for XPS analysis. Neglecting the other elements present (e.g., C, O, Si), the relative atomic concentrations of Rh and P in the colloids exposed to Cy_2PH were found to be approximately 1:2. After sputtering the surface with Ar⁺ ions, it was found that the relative atomic concentration of Rh increased while that of P decreased (3:1 ratio). This is indicative of a higher concentration of phosphorus on the surface of the colloids. Upon sputtering, the Rh(3d_{5/2}) peak remained unchanged but the P(2p) peak was observed at a lower binding energy of 130.2 eV which is characteristic of elemental phosphorus (ca. 129.7-130.3 eV), although the presence of free Cy₂PH cannot be ruled out, as the binding energy values for phosphines span the range of 130.9-132.5 eV.³⁵ It is possible that the phosphine may undergo degradation upon treatment

- (31) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003, 198, 317.
- (32) Hornstein, B. J.; Aiken, J. D., III.; Finke, R. G. Inorg. Chem. 2002, 41, 1625.
- (33) In stoichiometric reactions no evidence for ligand exchange between Cy₂PH and Me₂NH·BH₃, to yield Cy₂PH·BH₃, was observed by either ³¹P or ¹¹B NMR spectroscopy. See ref 24 for spectroscopic details for Cy₂PH·BH₃.
- (34) Analysis of these Rh(0) colloids treated with Cy₂PH by ³¹P NMR spectroscopy has been unsuccessful despite numerous attempts.

with the Ar^+ ion beam resulting in decomposition to elemental phosphorus. Nevertheless, the key result is that the studies of colloidal Rh treated with Cy₂PH employing XPS verified the presence of phosphorus on the surface of the catalyst particles.

We were also interested in investigating the fate of the GaH₃ moiety in the catalytic P–Ga bond cleavage reactions and the possibility that this may also act as a potential source of catalyst deactivation. As noted above, we have previously reported the poisoning of heterogeneous Rh(0) dehydrocoupling catalysts by group 13 hydride species including Ga–H bonds such as those present in GaH₃•OEt₂.¹⁴ In light of these observations, the potential role of the GaH₃ moiety in **1** as an additional contributor to the deactivation of the Rh(0) catalyst cannot be ruled out. Unfortunately, accurate XPS studies of Rh_{colloid}/[Oct₄N]Cl samples treated with GaH₃•OEt₂ or **1** could not be carried out, as Ga metal, a byproduct of both reactions, and colloidal Rh(0) could not be separated.

Catalytic Dissociation and Poisoning Behavior of Me_3P-GaH_3 (2). Next, we turned our attention toward the tertiary phosphine—gallane $Me_3 \cdot GaH_3$ 2.³⁶ Compound 2 was prepared, as previously reported, from the dehydrogenative metathesis reaction of Li[GaH_4] and [Me_3PH]Cl as a white crystalline solid which is stable in solution under N₂ at room temperature for over 24 h.²⁰

In contrast to that of 1, treatment of 2 with a catalytic quantity (ca. 2 mol %) of $[{Rh(\mu-Cl)(1,5-cod)}_2]$ did not result in gas evolution or a color change to black, characteristic of substantial Rh(I) reduction to Rh(0) colloidal metal. Furthermore, a ³¹P NMR spectrum of the mixture showed no evidence of reaction after 16 h. This suggested that, in contrast to 1, adduct 2 is not sufficiently hydridic to reduce the Rh(I) (pre)catalyst to Rh(0) metal, although a reaction that prevents Rh(I) reduction may occur below the spectroscopic detection limit and therefore could not be ruled out. With this in mind, we explored the reaction of 2 with a stoichiometric amount of $[{Rh(\mu-Cl)(1,5-cod)}_2]$ (e.g., P/Rh = 1:1). Significantly, this solely afforded the known compound [(Me₃P)RhCl(1,5-cod)] as determined by ³¹P and ¹H NMR spectroscopy.²⁶ The reactivity of **2** with 50 and 10 mol % [{Rh(μ -Cl)(1,5-cod)}₂] was also investigated, and in both cases, ³¹P NMR spectra revealed a complex mixture of products, including [(Me₃P)RhCl(1,5-cod)], with several unassigned doublets observed consistent with the presence of P-Rh coupling. As a result of these observations, it appears that although the reduction of the Rh(I) species by 2 does not take place, an alternative reaction indeed occurs. Consistent with this behavior, the addition of 2 mol % [{Rh- $(\mu$ -Cl)(1,5-cod)₂ to an equimolar mixture of 2 and Me₂-NH·BH3 resulted in no reaction after 16 h, as detected by ³¹P and ¹¹B NMR spectroscopy.³⁷ This and the previous

⁽³⁵⁾ Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer: Eden Prairie, MN, 1992.

⁽³⁶⁾ We probed the existence of exchange reactions between BH₃·THF and both 1 and 2. In both cases, complete P–Ga bond cleavage was observed with concomitant formation of Cy₂PH·BH₃ and Me₃P·BH₃, respectively. This indicates that for both adducts, the P–Ga bond is thermodynamically labile. See the Experimental Section for details.
(37) Similar to the case of 1, no exchange reaction between 2 and Me₂-

⁽³⁷⁾ Similar to the case of 1, no exchange reaction between 2 and Me₂-NH·BH₃ was detected by ³¹P and ¹¹B NMR spectra.

Scheme 2. Postulated Mechanism of Rh(0)-catalyzed P-Ga Bond Dissociation in 2

observations strongly suggest that the treatment of **2** with a catalytic quantity of $[{Rh(\mu-Cl)(1,5-cod)}_2]$ leads to PMe₃ binding to the Rh(I) center (which is below the spectroscopic detection limit). This prevents reduction to catalytically active Rh(0) metal and consequently hinders the dehydrocoupling of Me₂NH•BH₃. Indeed, even when 10 or 50 mol % [{Rh- $(\mu-Cl)(1,5-cod)$ }_2] was added, only 2% and 6% conversion to [Me₂N-BH₂]₂ was observed, respectively, by ¹¹B NMR spectroscopy.

In contrast to the results with Rh(I) precatalysts, treatment of 2, which is stable in solution at room temperature for up to 24 h, with 2 mol % Rh/Al2O3 in toluene or Rhcolloid/[Oct4N]-Cl in THF, resulted in immediate gas evolution (H_2 by ¹H NMR) and complete adduct dissociation to afford free PMe₃, which was detected by ³¹P NMR spectroscopy ($^{P}\delta$ -60.9) as the only product after 16 h (eq 5). Similar to the reaction with $[{Rh(\mu-Cl)(1,5-cod)}_2]$ noted above, a mixture of 2 and Me₂NH·BH₃ was also treated with a catalytic amount of the Rh(0) source Rh/Al₂O₃. After 16 h, ³¹P and ¹¹B NMR characterization of the black suspension showed free PMe₃ and unreacted Me₂NH·BH₃, respectively. This observation, similar to the case with 1, supports the hypothesis that PMe₃ binds to the Rh(0) surface (below the spectroscopic detection limit), poisoning the active sites on the heterogeneous catalyst and consequently preventing the dehydrocoupling of Me₂-NH•BH₃.

$$\frac{\text{Me}_{3}\text{P}\cdot\text{GaH}_{3}}{2} \xrightarrow{\text{[Rh^{0}]}}{-\text{H}_{2}} \text{PMe}_{3} + \text{Ga}$$
(5)

In an analogous manner to the case of **1**, the colloidal catalyst was examined by XPS before and after treatment with PMe₃. The XPS spectrum of the colloids before treatment showed essentially no phosphorus present, as indicated by the lack of a P(2p) peak. However, similar to **1**, the colloids after treatment showed a P(2p) peak at 131.9 eV, falling close to the typical range for phosphine oxides (ca. 132.0–134.0 eV).³⁵ Here, neglecting the other elements present (e.g., C, O, Si), the relative atomic concentrations of Rh and P were found to be approximately 2:1. This can be compared to the 1:2 ratio found in the case of Rh colloids that had been treated with Cy₂PH, which indicated that there

is more phosphorus on the surface of the colloidal Rh with the secondary phosphine than the tertiary phosphine. Similar to the case for Cy₂PH, a higher concentration of phosphorus on the surface of the colloids was indicated as the atomic concentration of Rh to P increased to 3.5:1 after sputtering with Ar^+ ions. Upon sputtering, the Rh(3d_{5/2}) peak remained unchanged but the P(2p) peak was again observed at a lower binding energy of 130.0 eV, which is characteristic of elemental phosphorus, possibly due to ion beam-induced degradation effects (129.7-130.3 eV).³⁵ In summary, studies of colloidal Rh treated with PMe3 employing XPS again verified the presence of phosphorus on the surface of the catalyst particles. As was the case with 1, despite previous evidence for GaH₃·OEt₂ acting as a dehydrocoupling catalyst poison,¹⁴ accurate XPS studies of Rh_{colloid}/[Oct₄N]Cl samples treated with $GaH_3 \cdot OEt_2$ or 2 could not be carried out.

Synthesis, Characterization, and Reactivity of Model Compounds $Me_3P \cdot Ga(Co(CO)_4)_3$ (3) and [(Me_3P)Co-(CO)₃]₂ (4). The Rh(0)-catalyzed P–Ga bond dissociation to afford the free phosphine and Ga metal that is observed when 1 and 2 are treated with Rh(0) suggests that cleavage of the P–Ga bond occurs through an interaction with the metal surface. A possible initial step involves the interaction of the hydridic hydrogen substituents in the GaH₃ group of 1 and 2 with the Rh(0) surface. This might weaken the P–Ga bond in the adduct, resulting in dissociation. Subsequently, this would be accompanied by decomposition of the GaH₃ moiety, as Ga metal and H₂ gas were both observed (Scheme 2).

To gain further insight into this interesting reactivity, we attempted to model the process by studying the reaction of **2** with a convenient, zerovalent group 9 metal complex. A reaction between **2** and $[Co_2(CO)_8]$ in Et₂O at 25 °C caused immediate gas evolution (H₂ by ¹H NMR) after only 1 min along with a small change in the ³¹P NMR chemical shift to -32 ppm (cf. ^P δ -39 for Me₃P·GaH₃), affording the cobalt carbonyl-substituted phosphine–gallane complex **3** in 78% yield (eq 7).

$$\frac{\text{Me}_{3}\text{P}\cdot\text{GaH}_{3} + \text{Co}_{2}(\text{CO})_{8} \xrightarrow{\text{Lt}_{2}\text{O}, 25 \,^{\circ}\text{C}} \text{Me}_{3}\text{P}\cdot\text{Ga}[\text{Co}(\text{CO})_{4}]_{3}}{2} \text{ (7)}$$

Figure 1. Molecular structure of **3**. Selected bond lengths (Å) and angles (deg): Ga(1)-P(1) 2.5108(12), Ga(1)-Co(1) 2.5557(7), Ga(1)-Co(2) 2.5552(7), Ga(1)-Co(3) 2.5686(7), Co-C 1.790(5) av.; P(1)-Ga(1)-Co(1) 103.91(3), P(1)-Ga(1)-Co(2) 109.10(3), P(1)-Ga(1)-Co(3) 102.23-(3), Co-Ga(1)-Co 113.49(3) av., C-P(1)-C 104.0(2) av., C-P(1)-Ga(1) 114.50(16) av.

Orange-red crystals were obtained from toluene at -30 °C, and analysis by X-ray crystallography confirmed the structure of 3 (Figure 1). The P-Ga bond length in 3 was found to be 2.5108(12) Å, significantly longer than that found in 2 (2.3857(6) Å).³⁸ Notably, the P–Ga bond length in the bulky adduct Cy₃P•GaH₃ is also considerably longer than that in 2 (2.460(2) Å).³⁹ Therefore, the lengthened P–Ga bond length in 3 may be a consequence of the increased steric bulk of the three $Co(CO)_4$ ligands around the Ga center relative to the smaller hydrogen atoms. However, an electronic effect probably also plays a role as the electronrich $Co(CO)_4$ substituents will tend to relieve the electron deficiency at Ga, thereby decreasing the strength of the P-Ga bond. Both the P and Ga centers adopt a distorted tetrahedral geometry with angles ranging from 102° to 115° whereas the Me and $Co(CO)_4$ substituents around those centers are staggered relative to each other. The average Co-Ga bond length in **3** is 2.5598(7) Å, which falls into the range of 2.38–2.58 Å for typical Co–Ga single bonds.⁴⁰

Transition metal complexes containing bonds with group 13 elements are an intriguing class of compounds that have received attention due to their use as potential precursors for MOCVD.⁴¹ Fischer and co-workers have reported the preparation of transition metal substituted gallanes by salt elimination reactions of transition carbonyl metallates with

various chlorogallium species.42 Cowley and co-workers have described the unique cobalt-gallium complex [{2,6-Me₂- $NCH_2_2C_6H_3$ Ga{Co(CO)₄}₂], which features intramolecular base stabilization by one of the dimethylamine groups.⁴³ More recently, the first gallane-coordinated metal complex, $(OC)_5W(\eta^1-GaH_3)$ (quinuclidine)), was synthesized from $W(CO)_6$ and H_3Ga (quinuclidine) via a photolysis method.⁴⁴ Structural characterization of the product revealed that the gallane is bound to the tungsten fragment via a W-H-Ga three-center two-electron bond. Shimoi and co-workers have reported the reaction of $[Co_2(CO)_8]$ with the diadduct B_2H_4 . 2PMe₃ that yielded [{Co(CO)₃} $_2(\mu$ -CO)(μ -BH–PMe₃)], which contains a bridging borylene–Lewis base unit.⁴⁵ In the case of 3, the binding of three $Co(CO)_4$ fragments to a single Ga center is a unique entry in bonding for these types of systems. The IR spectrum of **3** in toluene was recorded and showed six bands corresponding to CO stretches ranging from 1966 to 2088 cm⁻¹, values which fall in the accepted approximate values of 1850–2125 cm⁻¹ for a terminal carbonyl moiety. Interestingly, the IR spectrum for the previously mentioned cobalt-gallium complex reported by Cowley and co-workers also showed six bands attributed to the CO ligands on the $Co(CO)_4$ fragments in the region between 1878 and 2080 $cm^{-1}.43$

Consistent with the weakened P-Ga bond, solutions of 3 in Et_2O form the known complex 4 over several hours at 25 °C (eq 8). To the best of our knowledge, 4 has only been characterized by IR spectroscopy27a and X-ray crystallography.^{27b} We confirmed the identity of **4** by these methods as well as multinuclear NMR spectroscopy and mass spectrometry. For instance, the ³¹P NMR spectrum revealed a single resonance at 26 ppm whereas two resonances were observed in the ¹³C NMR spectrum, a singlet at 203 ppm and a doublet at 18 ppm (${}^{1}J_{CP} = 31.9$ Hz), corresponding to CO and Me carbon atoms, respectively. The IR spectrum of 4 contains two bands corresponding to CO stretches at 1950 and 1972 cm⁻¹, which, on average, appear at lower wavenumber values than those observed for 3. This can be attributed to the presence of the strong σ -donor PMe₃ molecules capping both ends of the $Co_2(CO)_6$ chain in 4, placing more electron density on the metal centers and, thus, increased back donation into the CO π^* orbitals. In contrast, the Lewis acidic gallium center in 3 does not donate significant electron density onto the Co centers, as reflected in the relatively high CO stretching frequencies.

The conversion of **3** to **4** intriguingly mimics the proposed mechanism in Scheme 2 for the reaction involving colloidal Rh with **1** and **2**. Weakening of the P–Ga bond is clearly observed in **3** and subsequently results in P–Ga bond cleavage; in this case, free PMe₃ is not generated, as this

⁽³⁸⁾ Tang, C. Y.; Coxall, R. A.; Downs, A. J.; Greene, T. M.; Kettle, L.; Parsons, S.; Rankin, D. W. H.; Robertson, H. E.; Turner, A. R. *Dalton Trans.* 2003, 3526.

⁽³⁹⁾ Atwood, J. L.; Robinson, K. D.; Bennett, F. R.; Elms, F. M.; Koutsantonis, G. A.; Raston, C. L.; Young, D. J. *Inorg. Chem.* **1992**, *31*, 2673.

⁽⁴⁰⁾ Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem. 1990, 31, 91.

⁽⁴¹⁾ For reviews on transition metal complexes of boron and other group 13 elements, see: (a) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. Chem. Rev. **1998**, 98, 2685. (b) Fischer, R. A.; Weib, J. Angew. Chem., Int. Ed. **1999**, 38, 2830. (c) Braunschweig, H.; Kollann, C.; Rais, D. Angew. Chem., Int. Ed. **2006**, 45, 5254.

^{(42) (}a) Fischer, R. A.; Miehr, A.; Priermeier, T. *Chem. Ber.* 1995, *128*, 831. (b) Fischer, R. A.; Miehr, A.; Hoffmann, H.; Rogge, W.; Boehme, C.; Frenking, G.; Herdtweck, E. Z. Anorg. Allg. Chem. 1999, 625, 1466.

⁽⁴³⁾ Olazábal C. A.; Gabbaï, F. P.; Cowley, A. H.; Carrano, C. J.; Mokry, L. M.; Bond, M. R. Organometallics **1994**, *13*, 421.

⁽⁴⁴⁾ Ueno, K.; Yamaguchi, T.; Uchiyama, K.; Ogino, H. Organometallics 2002, 21, 2347.

⁽⁴⁵⁾ Shimoi, M.; Ikubo, S.; Kawano, Y.; Katuh, K.; Ogino, H. J. Am. Chem. Soc. 1998, 120, 4222.

coordinates to reactive Co carbonyl fragments to form 4.46

$$\operatorname{Me}_{3} \operatorname{P} \cdot \operatorname{Ga}[\operatorname{Co}(\operatorname{CO})_{4}]_{3} \xrightarrow[-H_{2,} -G_{a}]{} \overset{\operatorname{Et}_{2}, 2, 5 \, ^{\circ} \mathrm{C}}{\underbrace{4 \, \mathrm{h}}{}} [(\operatorname{Me}_{3} \operatorname{P}) \operatorname{Co}(\operatorname{CO})_{3}]_{2} \quad (8)$$

Conclusions

The successful formation of P–B and N–B bonds by the transition metal-catalyzed dehydrocoupling of phosphine– and amine–borane adducts, respectively, prompted our investigations into the potential extension of this synthetic approach to P–Ga systems. Consequently, the secondary phosphine–gallane 1 was treated with Rh(I) or Rh(0) catalysts in toluene at 25 °C. However, instead of dehydro-coupling, this resulted in the formation of Ga metal, release of H₂ gas, and catalytic P–Ga bond cleavage generating the phosphine quantitatively. Similarly, the tertiary phosphine–gallane 2 also dissociated when treated with a catalytic amount of Rh(0). Interestingly, when Me₂NH·BH₃ was subsequently added to the reaction mixture, no dehydrocoupling to afford the cyclic dimer [Me₂N–BH₂]₂ was detected, indicating that catalyst deactivation is taking place. Studies involving the treatment of the Rh(0) colloidal catalyst with Cy₂PH, PMe₃, and GaH₃•OEt₂ revealed that both phosphines and the gallane poison the catalyst to varying degrees. XPS studies verified the presence of phosphorus on the surface of the Rh(0) colloids. A model reaction with a zerovalent group 9 metal complex was performed in an effort to probe the mechanism behind the metal-assisted dissociation process. Specifically, the reaction between $[Co_2(CO)_8]$ and 2 first afforded 3, which possesses a P-Ga bond, and subsequently afforded 4, with concomitant Ga metal precipitation. This suggests that a reasonable mechanism involves the reaction of the Ga-H bonds on the Rh colloid surface and the weakening of the P-Ga bond leading to adduct dissociation. Future work is directed at studying the catalytic P-Ga bond cleavage process in more detail and extending our studies to adducts containing other heavier group 13 and 15 elements.

Acknowledgment. T.J.C. is grateful to the Ontario Government for an OGS fellowship as well as a CIBA Specialty Chemicals Award, and C.A.J. thanks the NSERC of Canada for a scholarship. I.M. would like to thank the Canadian Government for a Canada Research Chair at Toronto as well as the EU for a Marie Curie Chair and the Royal Society for a Wolfson Research Merit Award at Bristol.

IC700573J

⁽⁴⁶⁾ There is also a possibility that the reactions with $[Co_2(CO)_8]$ may proceed via routes involving radicals, and this cannot be ruled out at this time.